
Chapter 5

g4re – Tool Chain for Reverse Engineering C++ Programs

In this chapter we present the design and implementation of the g4re tool chain [Kraft

et al. 2005a; 2006b]. g4re is a tool chain, because it is constituted by applications and

libraries that are used either individually, or in concert. We designed g4re with a GXL-

based pipe-filter architecture; each constituent application or library in the chain takes, as

input, the output of the preceding application or library in the chain. An important benefit

of this architecture is that g4re consists of a set of loosely coupled, reusable modules: the

ASG module, the schema and serialization modules, the transformation module, the linking

module, and the API module. We wrote all modules in ISO C++.

In Section 5.1 we present the architecture of g4re. In this section, we also include an

overview of the CppInfo schema. In Section 5.2 we present a sample usage of g4re.

5.1 Architecture

In Figure 5.1, we provide an overview of the packages in the tool chain.We illustrate imple-

mentation artifacts, which we indicate with bold text, and third party libraries, which we

indicate with italic text, at the left of the figure. We illustrate the ASG module, generic, as a

package in the large g4re package at the right of the figure, and describe it in Section 5.1.1.

Figure 5.1: Overview of g4re. Dashed lines represent “use” dependencies. Bold text indicates

an implementation artifact. Italic text indicates a third party library.

41

We illustrate the schema and serialization modules, schema and serialization, as packages in

the large cppinfo package at the center of the figure, and describe them in Section 5.1.2.

We illustrate the transformation module, g4xformer, as a package in the large g4re package

at the right of the figure, and describe it in Section 5.1.3. Finally, we illustrate the linking

module and the API module, linker and api, as packages in the large cppinfo package at the

center of the figure, and describe them in Sections 5.1.4 and 5.1.5, respectively.

5.1.1 The ASG module: generic

In the generic package, we provide parsing, storage, traversal, and serialization facilities for

working with the generic ASG representation of gcc. The input to this package is a tu

file, or a GXL encoding of a tu file. The output of this package is a gzipped GXL encoding

of the input file, or an in-memory representation of the generic ASG.

We implemented two parsers: a tu file parser that uses a scanner generated by flex, and

a GXL file parser that uses the expat XML parsing library and the zlib compression library

via the pattern and utility library with standard extensions (pulse). We also implemented

a simple node list representation for storage of the parsed ASG, and several parameter-

ized methods for traversing the leftmost child right sibling (LCRS) tree that underlies the

ASG. Finally, we implemented an extensible serialization facility that we use to create GXL

encodings of tu files.

The first parser we wrote provides functionality to parse a tu file and to store the

corresponding ASG. After parsing a tu file, we perform a series of transformations on the

stored ASG to remove extraneous information and to make it more suitable for reverse

engineering tasks. In particular, we:

• remove fields that store internal information used by the gcc back end,

• mark methods as static if their parameter lists do not contain a this pointer,

• mark methods as const if their parameter lists contain a const this pointer,

• remove the this pointer from all method parameter lists.

42

We use this parser in conjunction with our serialization facility to create GXL instances of

tu files.

The second parser we wrote provides functionality to parse a GXL file or gzipped GXL

file and to store the corresponding ASG. Three advantages of this parser over the tu parser

are:

1. reentrance,

2. the lack of post-parse transformation overhead,

3. the compression rate is higher for GXL files than for tu files.

We use the tu parser (in conjunction with our serialization facility) to create the GXL file(s)

accepted by this parser; thus, there is a one-time cost associated with its use.

5.1.2 The Schema and Serialization Modules: schema and serialization

In the schema package, we provide a class library that implements the CppInfo schema1

for the ISO C++ programming language. In the current implementation, we provide 72

classes, 42 of which are concrete, that provide information about C++ language elements.

Language elements include declarations, such as classes (including class templates and class

template instantiations); namespaces; functions (including function templates and func-

tion template instantiations); and variables, statements (including control statements and

exception statements), and some expressions.

In the serialization package, we provide serialization facilities for working with instances

of the schema representation of C++. We implemented a parser to read GXL encodings;

gzipped files are also accepted. We implemented visitor [Gamma et al. 1995] classes to write

gzipped GXL encodings. We used C++ templates to allow the package to read and write

both individiual and linked instances of the schema representation.

1We describe the CppInfo schema in more detail in Section 4.2.

43

5.1.3 The Transformation Module: g4xformer

In the g4xformer package, we provide an implementation of the transformation from the

ASG representation that we provide in the generic package to the representation that we

provide in the schema package. The input to this package is a tu file, or a GXL encoding

of a tu file; gzipped files of either type are also accepted. The output of this package is a

gzipped GXL encoding of the instance of the schema representation that corresponds to the

generic ASG in the input file.

We implemented the transformation in three passes. In the first pass, we traverse the

generic ASG in program order, and create the core of the instance of the schema represen-

tation. The core consists of all declaration, declarator, and statement nodes, as well as

structural edges. In the second pass, we adorn the core with edges that indicate the use

of a type; these edges include inheritance edges. In addition, in the second pass, we build

all cv-qualified types. We also resolve uses of bound template template parameters to their

template declarations.2. Finally, in the third pass, we adorn the graph that results from the

second pass with edges that indicate uses of expressions, including function calls3

5.1.4 The Linking Module: linker

In the linker package, we provide an implementation of our linking algorithm. The input to

this package is a set of GXL encodings of instances of the schema representation for all C++

translation units in a program; gzipped files are also accepted. The input files need not be

created by the g4xformer package. The output of this package is a gzipped GXL encoding

of the linked, or unified, instance of the schema representation for all C++ translation units

in the program.

Programs written in C++ consist of multiple files, both header and source. A C++

translation unit consists of a source file and all files that it includes, either directly or

transitively. A C++ compiler, such as gcc, operates on a single translation unit at a time;

2This task is not needed for compilation, and is not performed by gcc
3 Calls to virtual functions are designated as such in tu files, but sets of possible targets are not identified.

These sets are available via the gcc compiler flag -fdump-class-hierarchy.

44

the generated object code for all translation units in a program is linked by the system

linker, e.g., ld on Unix systems. A C++ reverse engineering tool, such as g4re, also operates

on a single translation unit at a time; however, the generated output is not object code, but

rather a program representation such as an ASG.

We perform linking n − 1 times, where n is the number of translation units, when n is

greater than one. Otherwise, we perform linking one time. We achieve linking by performing

a traversal of the most recently constructed instance of the schema representation. We add

or append a schema class instance to the unified instance of the schema representation if

the class instance does not exist, or is incomplete, in the unified instance. A schema class

instance is incomplete if it is missing a required element (as defined by the CppInfo schema)

or contains another incomplete instance. Using our definition of incomplete, we resolve

function declarations to their corresponding definitions.

There is a special case for linking function parameters. A function parameter from

a function declaration (prototype), is not always identical to the corresponding function

parameter from the function definition. A function parameter may only have an initial

value in a function declaration. In addition, the name of the function parameter may differ,

e.g., anonymous function parameters are commonly used in header files.

5.1.5 The API Module: api

In the api package, we provide an abstract class that defines the interface for an API that

provides access to information about language elements in a C++ program. In addition, we

provide a concrete implementation of the API. The input to this package is a GXL encoding

of a linked instance of the schema representation; gzipped files are also accepted. The input

files need not be created by the linker package. The output of this package is an API, an

in-memory representation of the linked instance that may be queried by a user program.

We designed the api package to provide a clear and flexible interface. We provide two

points of access. The first point of access is a pointer to the global namespace, from which a

user can traverse the ASG that underlies the API. We provide iterator classes, as well as an

45

abstract visitor class, to use when accessing the API in this fashion [Gamma et al. 1995]. The

second point of access is a collection of lists that each contain instances of a particular schema

class. We provide, in two forms, the lists for Namespace, Class, Enumeration, Enumerator,

Function, Variable, and Typedef. The first form provides all instances of the particular

schema class; the second form provides filtered instances of the particular schema class.

Filtered instances are determined by user-provided filter lists that contain the names of

source files from which schema class instances should be ignored. We provide a script that

generates filter lists.

5.2 Sample Usage

In Figure 5.2 we provide an overview of API usage. We illustrate a GXL file containing a

linked instance of the schema representation at the top of the figure. Next, we illustrate a

sample user program, metrics, that instantiates then queries the API to compute metrics.

We illustrate the API, the abstract class cppinfo::api::Interface, in the middle of the figure.

Finally, we illustrate filter lists at the bottom of the figure.

The user program instantiates the API with the name of the GXL file; when the API

is instantiated, it reads the filter lists. The user program queries the instantiated API to

perform a reverse engineering task, such as a program analysis. In Section 5.2.1 we describe

the process of acquiring the GXL files needed to instantiate the API. In Section 5.2.2 we

present a sample user program that instantiates and queries an API to perform a simple

program analysis.

5.2.1 Input

In Figure 5.3 we illustrate the process of using gcc, and optionally g4re and/or gzip, to create

a set of files that contain instances of the generic schema. We show the input, a C++

source file, at the left of the figure. We show the output, a set of files to transform, at the

right of the figure (see Subsection 5.1.3 for details). This set may contain any combination

46

Figure 5.2: Overview of API usage. Solid, directed lines show input, unless otherwise noted.

Dashed lines show notes.

47

Figure 5.3: UML Activity Diagram for Transformer Input. The process of creating a set of

files to transform.

Figure 5.4: UML Activity Diagram for Linker Input. The process of creating a set of files

to link.

of the four possible encodings of the input.

We show the use of the gcc command line flag -fdump-translation-unit-all to obtain

a plain text representation of the generic instance for each translation unit in a program.

We show the creation of these representations, known as tu files, in the upper left of Fig-

ure 5.3. We use tu files rather than hard-coding our solution into the gcc source code. This

provides flexibility, and fits our theme of exchange among reverse engineering tools. In the

upper right of the figure, we show the optional use of the g4re command line flag -fencode

to obtain, for each tu file, a GXL encoding of an instance of the generic schema. At the

bottom of the figure, we show the optional use of gzip to compress either a tu file, or a GXL

instance,

In Figure 5.4 we illustrate the process of using g4re to create a set of GXL files that

contain instances of the CppInfo schema. We show the input, the set of files to transform

48

Figure 5.5: UML Activity Diagram for API Input. The process of creating a file for use

with the API.

(obtained as shown in Figure 5.3), at the left of the figure. We show the output, a set of

files to link, at the right of the figure (see Subsection 5.1.4 for details).

We show the use of the g4re command line flag -ftransform to obtain, for each generic

instance, a GXL encoding of a temporary instance of the CppInfo schema. We show the

creation of these temporary instances, which use string encodings of the unique names for

the contained instances of CppInfo classes, in the center of Figure 5.4. We omit showing the

optional use of gzip in this figure.

In Figure 5.5 we illustrate the process of using g4re to create a GXL file that contains a

linked instance of the CppInfo schema. We show the input, the set of files to link (obtained

as shown in Figure 5.4), at the left of the figure. We show the output, a GXL encoding of

the linked instance of the CppInfo schema, at the right of the figure (see Subsection 5.1.5

for details).

We show the use of the g4re command line flag -flink to obtain, for a set of temporary

instances of the CppInfo schema, a GXL encoding of the linked instance of the CppInfo

schema. We show the creation of the linked instance, which uses unique integers to identify

the contained instances of CppInfo classes, at the right of Figure 5.5. We omit showing the

optional use of gzip in this figure.

5.2.2 Usage

In Source Listing 5.1, we list a small C++ program that consists of ten classes. We list two

root classes, Shape and Visitor, on lines 1 and 7, respectively. Root classes do not have base

classes. We list three interior classes, Rectangle, ComputationVisitor, and SerializationVisitor,

49

1 class Shape { } ;
2 class Ci r c l e : public Shape { } ;
3 class Rectangle : public Shape { } ;
4
5 class Square : public Rectangle { } ;
6
7 class Vi s i t o r { } ;
8 class ComputationVis itor : public Vi s i t o r { } ;
9 class S e r i a l i z a t i o n V i s i t o r : public Vi s i t o r { } ;

10
11 class AreaComputationVisitor : public ComputationVis itor { } ;
12 class PerimeterComputat ionVis i tor : public ComputationVis itor { } ;
13
14 class XmlS e r i a l i z a t i o nV i s i t o r : public S e r i a l i z a t i o n V i s i t o r { } ;

Source Listing 5.1: Sample C++ program. Two disjoint inheritance hierarchies that

consist of ten classes.

on lines 3, 8, and 9, respectively. Interior classes have one or more base classes, and one or

more derived classes. Finally, we list five leaf classes, Circle, Square, AreaComputationVis-

itor, PerimeterComputationVisitor, and XmlSerializationVisitor, on lines 2, 5, 11, 12, and 14,

respectively. Leaf classes have one or more base classes, but no derived classes.

1 void countClas se s (const cpp in fo : : ap i : : Fi lename t& f i l ename) {
2 using cpp in fo : : ap i : : I n t e r f a c e ;
3 using cpp in fo : : ap i : : L inked In t e r f a c e ;
4 I n t e r f a c e ∗ i n t e r f a c e = new L inked In t e r f a c e (f i l ename) ;
5 unsigned root = 0 , i n t e r i o r = 0 , l e a f = 0 ;
6 cpp in fo : : Con s tC l a s sP t rL i s t I t e r a t o r t i = i n t e r f a c e −>ge tC l a s s e s () . c r e a t e I t e r a t o r () ;
7 while (true == i−>i sVa l i d ()) {
8 const cpp in fo : : ConstClassPtr t c = i−>getCurrent () ;
9 unsigned baseCount = c−>getBaseClas se s () . s i z e () ;

10 unsigned derivedCount = c−>ge tDer ivedClas s e s () . s i z e () ;
11 i f (0 == baseCount) {
12 ++root ;
13 }
14 else {
15 i f (0 < derivedCount)
16 ++i n t e r i o r ;
17 else

18 ++l e a f ;
19 }
20 i−>moveNext () ;
21 }
22 delete i ;
23 }

Source Listing 5.2: Sample user program. A simple program analysis that counts the

number of root, interior, and leaf classes.

In Source Listing 5.2, we list a C++ function that instantiates and queries an API

instance to compute the number of root, interior, and leaf classes in a C++ program. We

50

list the function declaration on line 1, where the parameter filename denotes the input

program (see Subsection 5.2.1 for details). We list the API instantiation on line 3, where

the filename is passed to the constructor of class cppinfo::api::LinkedInterface. On line 5, we

use the list point of access provided by the API to obtain an iterator that accesses each

class in the input program4. Finally, we list a while loop on lines 6–20 that computes the

number of root, interior, and leaf classes.

4The list contains all ClassNonTemplate, ClassTemplate, and ClassTemplateInstantiation instances.

A trivial addition to the loop is required to exclude instances of one or two of these classes.

