
Chapter 6

Case Studies: Realizing the Infrastructure with g4re

In this chapter we present two case studies in which we use the g4re tool chain to realize

our infrastructure. We designed our case studies to determine the space and time costs

incurred by the use of our infrastructure. We measure space in two dimensions: size on

disk, and size of graph(s), i.e., the number of nodes and edges. We measure times for

parsing and building in-memory representations, as well as for the linking process, and the

application of XSLT style sheets.

First, in Section 6.1, we describe the twelve applications and libraries that serve as the

test suite in our case studies. In Section 6.2, we exchange low-level graphs, and measure the

space and time costs incurred. In Section 6.3, we exchange middle-level graphs, and again

measure the space and time costs incurred. In this section we also apply XSLT style sheets

to each middle-level graph. We use style sheets that summarize the contents of each middle-

level graph instance; the process of writing the style sheets, which requires knowledge of

only the schema, is automatable.

6.1 Test Suite

In Table 6.1, we list the twelve open source applications and libraries, or test cases, that

form the test suite for our studies1. In the first column, we list the names that we use

to refer to the test cases. In the next three columns of the table, we list relevant data

about the test cases. We list the version numbers in the second column, the number of

C++ translation units in the third, and the approximate number of thousands of lines of

non-commented, non-preprocessed lines of code in the fourth.

The twelve applications and libraries that form our test suite are widely used, are freely

available on the Web, and consist of approximately one million lines of non-commented, non-

1Additional information about each test case is available in our online repository.

52

Test Case Version C++ Translation Units NCLOC (≈ K)

AvP CVS 07/22/05 95 295
CppUnit 1.10.2 51 4
Doxygen 1.4.4 69 170
FluxBox 0.9.14 107 32
FOX 1.4.17 245 110
HippoDraw 1.15.8 249 55
Jikes 1.22 38 70
Keystone 0.2.3 52 16
Licq 1.3.0 28 36
Pixie 1.5.2 78 80
Scintilla 1.66 78 35
Scribus 1.2.3 110 80

Table 6.1: Test suite. The 12 test cases that we use in our study. For each test case, we list
the version, the number of C++ translation units, and the approximate number of thousands
of non-commented, non-preprocessed lines of code (NCLOC). The test suite contains 1,200
C++ translation units and approximately one million lines of code.

preprocessed code. AvP is a Linux port of the Fox Interactive/Rebellion Developments game

Aliens vs Predator (Gold Edition) [Rebellion 2005]. CppUnit is a C++ port of the JUnit

framework for unit testing [CppUnit Project 2006]. Doxygen is a documentation system for

C, C++, and Java [van Heesch 2006]. FluxBox is a light-weight X11 window manager built

for speed and flexibility [FluxBox Project 2006]. FOX is a toolkit to facilitate development

of graphical user interfaces [van der Zijp 2006]. HippoDraw provides a highly interactive

data analysis environment [Kunz 2006]. Jikes is a Java compiler system from IBM [IBM

Jikes Project 2006]. Keystone is a parser and front end for ISO C++ [Keystone Project

2005; Malloy et al. 2003a]. Licq is a multi-threaded ICQ clone [Licq Project 2006]. Pixie is

a RenderMan R© like photorealistic renderer [Arikan 2006]. Scintilla is a source code editing

component that includes support for syntax styling, error indicators, code completion, and

call tips [Hodgson 2006]. The final test case, Scribus, is a professional, cross-platform

desktop publishing system [Scribus Project 2006].

We executed all experiments on a custom workstation with a Dual Core AMD Opteron

TM 165 processor, 2048 MB of PC3200 DDR RAM, and a 250 GB, 7200 RPM SATA II

hard disc on which we installed the Slackware 10.2 operating system after formatting with

53

version 3.6 of the ReiserFS filesystem. We performed the experiments with version 1.5.0 of

g4re, which we compiled with version 4.1.1 of gcc. We created all tu files with gcc version

3.3.6.

6.2 Case Study: Exchanging Low-Level Graphs

In this section we describe the results of our first case study, in which we examine low-level

graphs from our infrastructure. g4re exchanges multiple formats, as discussed in Subsec-

tion 5.2.1. In Subsections 6.2.1 and 6.2.2, we describe the formats that g4re exchanges, and

present results for exchanging GXL encoded instances of schemas at Level 0 and I of our

infrastructure, respectively. We discuss the results of the case study in Subsection 6.2.3.

6.2.1 Exchanging Graphs at Level 0

In this subsection we investigate the costs associated with exchanging instances of low-

level graphs; in particular, we investigate the costs of exchanging instances of the generic

ASG schema, in both tu and GXL formats. First, we illustrate the two exchange formats.

Second, we measure the space and time costs incurred by exchanging ASGs, which are found

in Level 0 of our infrastructure.

1 class Base { } ;
2 class Parser : public Base { } ;

Source Listing 6.1: Source code for class Parser. Definition of the C++ class Parser.
Parser inherits from the class Base.

In Source Listing 6.1, we list C++ code for the definition of class Parser. We list a base

class, Base, on line 1, and the class Parser on line 2. The inheritance relationship between

Parser and Base is public and non-virtual.

We list the definition of a C++ class, Parser, in the generic tu file format in Source

Listing 6.2, and the corresponding definition as a GXL encoded instance of the generic

schema in Source Listing 6.3. GXL is clearly more verbose than the gcc tu file format; the

respective character counts for the text in the figures are 447 and 1178.

54

@3 type dec l name : @4 type : @5 srcp : Parser . cpp : 2
a r t i f i c i a l chan : @6 addr : b7e0a460

@4 i d e n t i f i e r n o d e s t r g : Parser l ng t : 6 addr : b66b3ac0
@5 reco rd type name : @3 s i z e : @7 algn : 8

base : @8 public struct

f l d s : @9 fn c s : @10 b in f : @11
addr : b7e0a310

Source Listing 6.2: Instance of a tu file. Definition of class Parser as represented in a tu
file. A node definition in a tu file consists of: a unique integer prepended with “@”, a string
representing the node type, edges of the form “edge: dest”, fields of the form “field: value”,
and a set of single word attributes.

<node id=”n3 ”>
<type x l i nk : h r e f=”GENERIC. gx l#type dec l ”/>
<a t t r name=”a t t r ”><set><s t r i ng >a r t i f i c i a l </s t r i ng ></set ></att r>

<a t t r name=”srcp ”><s t r i ng >Parser . cpp:2</ s t r i ng ></att r>

</node>
<edge from=”n3 ” to=”n4 ”><type x l i nk : h r e f=”GENERIC. gx l#name”/></edge>

<edge from=”n3 ” to=”n5 ”><type x l i nk : h r e f=”GENERIC. gx l#type ”/></edge>

<edge from=”n3 ” to=”n6 ”><type x l i nk : h r e f=”GENERIC. gx l#chan ”/></edge>

<node id=”n4 ”>
<type x l i nk : h r e f=”GENERIC. gx l#i d e n t i f i e r n o d e ”/>
<a t t r name=”a t t r ”><set ></set ></att r>

<a t t r name=”s t r g ”><s t r i ng >Parser </s t r i ng ></att r>

</node>
<node id=”n5 ”>

<type x l i nk : h r e f=”GENERIC. gx l#reco rd type ”/>
<a t t r name=”a t t r ”><set><s t r i ng >struct</s t r i ng ></set ></att r>

<a t t r name=”qual ”><s t r i ng ></s t r i ng ></att r>

</node>
<edge from=”n5 ” to=”n8 ”>

<type x l i nk : h r e f=”GENERIC. gx l#base ”/>
<a t t r name=”base ”><tup><bool>false </bool><s t r i ng >public</s t r i ng ></tup></att r>

</edge>

<edge from=”n5 ” to=”n3 ”><type x l i nk : h r e f=”GENERIC. gx l#name”/></edge>

<edge from=”n5 ” to=”n7 ”><type x l i nk : h r e f=”GENERIC. gx l#s i z e ”/></edge>

<edge from=”n5 ” to=”n10 ”><type x l i nk : h r e f=”GENERIC. gx l#fnc s ”/></edge>

<edge from=”n5 ” to=”n11 ”><type x l i nk : h r e f=”GENERIC. gx l#b in f ”/></edge>

Source Listing 6.3: GXL instance of the generic schema. Definition of class Parser
as represented in a GXL encoded instance of the generic schema. The generic GXL
schema is a direct encoding of the tu file format, but with internal gcc information, such
as addresses and string lengths, omitted. The “@” symbol is translated to “n” to conform to
XML standards.

55

.cpp.tu[.gxl][.gz] .cpp.tu[.gz] .cpp.tu.gxl[.gz]
Test Case Nodes Edges Edges

AvP 3 286 604 8 607 856 8 509 901
CppUnit 4 574 861 10 983 481 10 911 237
Doxygen 7 558 527 17 894 321 17 724 872
FluxBox 12 016 093 30 111 171 29 852 859
FOX 12 139 219 32 260 488 31 953 355
HippoDraw 18 835 420 44 662 239 44 338 296
Jikes 7 543 803 17 437 798 17 321 098
Keystone 6 159 791 15 152 153 15 047 146
Licq 2 663 307 6 813 822 6 751 433
Pixie 3 278 791 7 665 603 7 620 166
Scintilla 1 414 562 3 456 874 3 427 785
Scribus 17 418 294 44 859 563 44 426 635

Table 6.2: Level 0: Numbers of nodes and edges. The numbers of nodes and edges for ASGs
that represent the test cases.

Note that the text in Source Listing 6.2 contains information not present in Source

Listing 6.3. Extraneous information, such as an address or string length, is omitted from

the GXL encoding. Empty lists are detected and removed during encoding; the flds edge is

omitted in this example. The fncs edge is not omitted, because gcc provides a constructor,

copy constructor, and assignment operator for each class.

It is well known that XML imposes significant storage costs; however, this fact has not

hindered its wide spread adoption. Due to the prevalence of XML, there are several tools,

available in popular languages such as C, C++, and Java, that were designed with these

costs in mind. We designed and implemented a wrapper for the XML parser expat [eXpat

Project 2005] that uses zlib [zlib Project 2005] to read compressed files. We also implemented

a subclass of the C++ standard library class ostream to write compressed files. To provide

a complete comparison, we instrumented our flex scanner to read compressed tu files.

In Table 6.2, we list the numbers of nodes and edges for ASGs that represent the test

cases. In column 1, we list the test cases. In column 2, we list the number of nodes in the

possibly GXL-encoded instance of the generic schema. In columns 3 and 4, we list the

numbers of edges in the tu files and GXL encoded tu files, respectively.

We apply the pruning algorithm discussed in Subsection 5.1.1 during the parse of a tu

56

Test Case .cpp.tu[.gz] .cpp.tu.gxl[.gz]

AvP 809 84 1 376 122
CppUnit 567 98 1 784 116
Doxygen 863 152 2 794 172
FluxBox 1 540 250 4 842 312
FOX 1 643 230 5 162 303
HippoDraw 2 283 376 7 222 469
Jikes 872 145 2 795 181
Keystone 773 126 2 439 157
Licq 341 56 1 081 69
Pixie 414 56 1 202 71
Scintilla 177 27 554 34
Scribus 2 184 352 6 967 440

Table 6.3: Level 0: Size on disk (MB). The size on disk, in megabytes, for ASGs that
represent the test cases.

file. We show the effects of our pruning algorithm in Table 6.2. Our pruning algorithm

does not remove any nodes, but it does remove edges. In the table, we show the difference

between the numbers of edges in the tu files and the GXL encodings of the tu files. Next,

we investigate the storage costs introduced by the use of GXL, and the saving that can be

achieved by compressing files of each format.

In Table 6.3, we list the sizes on disk, in megabytes, for ASGs that represent the test

cases. In column 1, we list the test cases. In columns 2 and 3, we list the total size of the

uncompressed and compressed tu files, respectively. In columns 4 and 5, we list the total

sizes of the uncompressed and compressed GXL encoded tu files, respectively.

A comparison of columns 2 and 4 of the table shows the significant storage cost intro-

duced by the use of uncompressed GXL. For all but one of the test cases, the uncompressed

GXL encodings of the tu files more than double the storage costs. For example, the total

storage cost of the tu files for Jikes is 872 megabytes, but the total storage cost of the GXL

encodings is 2 795 megabytes; the tu files are 3.2 times smaller than the GXL encodings.

The outlier is AvP, for which the tu files, at 809 megabytes, are only 1.7 times smaller

than the GXL encodings. On average, uncompressed tu files are 3.02 times smaller than

the GXL encodings of the tu files, with a standard deviation of 0.42. Columns 3 and 5

57

Test Case .cpp.tu[.gz] .cpp.tu.gxl[.gz]

AvP 97.39 112.62 136.58 155.71
CppUnit 123.47 142.85 174.66 199.56
Doxygen 206.07 238.65 279.39 322.82
FluxBox 341.50 388.24 472.39 552.80
FOX 347.15 411.66 503.60 577.47
HippoDraw 514.72 584.73 715.28 829.80
Jikes 208.93 233.54 253.77 291.35
Keystone 171.89 194.75 239.23 275.83
Licq 76.06 87.47 90.77 105.75
Pixie 86.74 104.06 125.20 144.57
Scintilla 38.63 46.65 56.30 64.99
Scribus 508.73 572.60 600.87 703.67

Table 6.4: Level 0: Time (s). The running time, in seconds, to parse and build in-memory
representations of ASGs that represent the test cases.

show the significant savings in storage cost that compression introduces when compared to

columns 2 and 4, respectively. In addition, the gap between the storage costs of the two file

formats is significantly reduced when compression is used. On average, compressed tu files

are 1.25 times smaller than the GXL encodings of the tu files, with a standard deviation

of 0.08. GXL, and XML in general, compresses at a higher ratio than other text formats.

Next, we investigate the run-time costs introduced by the use of compression and GXL.

In Table 6.4, we list the running times, in seconds, to parse and build in-memory rep-

resentations of ASGs that represent the test cases. In column 1, we list the test cases. In

columns 2 and 3, we list the total times for the uncompressed and compressed tu files, re-

spectively. In columns 4 and 5, we list the total times for the uncompressed and compressed

GXL encoded tu files, respectively.

As stated in Subsection 5.1.1, we parse tu files using a flex generated scanner, GXL

files using expat, and compressed files using zlib. We use the same node list graph data

structure to store each graph instance in memory. A comparison of columns 2 and 4 of the

table shows the run-time cost introduced by the use of GXL. The running times for GXL

inputs are consistently higher than those for tu inputs, but the run-time costs introduced

by GXL are much lower than the corresponding storage costs. On average, parsing the

58

uncompressed tu files is 1.36 times faster than parsing the uncompressed GXL encodings of

the tu files, with a standard deviation of 0.10. The average time for uncompressed tu files

is 226.77 seconds, with a standard deviation of 164.86. On average, parsing the compressed

tu files is 1.36 times faster than parsing the compressed GXL encodings of the tu files, with

a standard deviation of 0.08. The average time for compressed tu files is 259.82 seconds,

with a standard deviation of 186.81.

6.2.2 Exchanging Graphs at Level I

In this subsection we continue to investigate the costs associated with exchanging instances

of low-level graphs; in particular, we investigate the costs of exchanging instances of the

CppInfo schema. First, we illustrate a GXL encoded instance of the CppInfo schema. Second,

we measure the space and time costs incurred by exchanging APIs, which are found in Level

I of our infrastructure.

We list the definition of C++ class Parser (see Source Listing 6.1 for details) as a GXL

encoded, linked instance of the CppInfo schema in Source Listing 6.4. The character count

for the text in the figure is 1307, which is larger than even the GXL encoding of the original

tu file. However, we implemented maximal sharing of strings, such as file and identifier

names, and integers, such as line and column numbers, to improve the scalability of this

format.

We show the effects of our linking process in Table 6.5. In the table, we show the

differences between the numbers of nodes and edges in the intermediate (unlinked) instances

and the linked instances of the CppInfo schema. In columns 2 and 3, we list the sums of

nodes and edges, respectively, for all intermediate instances for each test case. The numbers

of nodes and edges for intermediate instances vary widely. The minimum number of nodes

is 780 024 for Scintilla, and the maximum number of nodes is 10 164 005 for HippoDraw.

The minimum number of edges is 2 391 321 for Scintilla, and the maximum number of edges

is 34 941 134 for HippoDraw. The average numbers of nodes and edges are 4 262 119 and

14 445 413, with standard deviations of 3 402 982 and 11 469 128, respectively.

59

<node id=”n781 ”>
<type x l i nk : h r e f=”CppInfo . gx l#ClassNonTemplate ”/>
<a t t r name=” v i s i b i l i t y ”><enum></enum></att r>

<a t t r name=”isConst ”><bool>false </bool></att r>

<a t t r name=” i s V o l a t i l e ”><bool>false </bool></att r>

<a t t r name=”key ”><enum>class </enum></att r>

</node>
<edge from=”n781 ” to=”n782 ”><type x l i nk : h r e f=”CppInfo . gx l#HasSourceLocation ”/></edge>

<edge from=”n781 ” to=”n1 ”><type x l i nk : h r e f=”CppInfo . gx l#HasScope ”/></edge>

<edge from=”n781 ” to=”n784 ”><type x l i nk : h r e f=”CppInfo . gx l#HasName”/></edge>

<edge from=”n781 ” to=”n758 ” toorder=”24 ”>
<type x l i nk : h r e f=”CppInfo . gx l#Bases ”/>
<a t t r name=” i n h e r i t a n c e S p e c i f i e r ”>

<tup><enum>public</enum><bool>false </bool></tup>

</att r>

</edge>

<edge from=”n781 ” to=”n785 ” toorder=”28 ”>
<type x l i nk : h r e f=”CppInfo . gx l#Functions ”/>

</edge>

<edge from=”n781 ” to=”n790 ” toorder=”29 ”>
<type x l i nk : h r e f=”CppInfo . gx l#Functions ”/>

</edge>

<edge from=”n781 ” to=”n795 ” toorder=”30 ”>
<type x l i nk : h r e f=”CppInfo . gx l#Functions ”/>

</edge>

<node id=”n782 ”>
<type x l i nk : h r e f=”CppInfo . gx l#SourceLocat ion ”/>

</node>
<edge from=”n782 ” to=”n760 ”><type x l i nk : h r e f=”CppInfo . gx l#HasFilename ”/></edge>

<edge from=”n782 ” to=”n783 ”><type x l i nk : h r e f=”CppInfo . gx l#HasLine ”/></edge>

<edge from=”n782 ” to=”n4 ”><type x l i nk : h r e f=”CppInfo . gx l#HasColumn”/></edge>

<node id=”n783 ”>
<type x l i nk : h r e f=”CppInfo . gx l#SourcePos i t i on ”/>
<a t t r name=”number ”><int>2</int></att r>

</node>
<node id=”n784 ”>

<type x l i nk : h r e f=”CppInfo . gx l#I d e n t i f i e r ”/>
<a t t r name=” s t r i n g ”><s t r i ng >Parser </s t r i ng ></att r>

</node>

Source Listing 6.4: GXL instance of the CppInfo schema. Definition of class Parser as
represented in the GXL encoded, linked instance of the CppInfo schema.

60

.cpp.tu.ci.gxl[.gz] .cil.gxl[.gz]
Test Case Nodes Edges Nodes Edges

AvP 2 059 850 6 321 574 148 972 631 882
CppUnit 2 657 601 9 208 857 85 355 330 845
Doxygen 2 234 210 7 956 801 208 463 805 926
FluxBox 6 562 227 23 026 116 215 846 1 264 464
FOX 9 631 093 29 647 216 221 383 1 016 806
HippoDraw 10 164 005 34 941 134 254 270 1 470 270
Jikes 2 932 380 10 204 160 154 132 554 202
Keystone 3 314 379 11 731 213 139 570 625 173
Licq 1 142 403 3 996 935 128 045 541 960
Pixie 1 538 147 4 832 153 109 408 491 839
Scintilla 780 024 2 391 321 129 658 437 110
Scribus 8 129 110 29 087 482 330 537 1 510 133

Table 6.5: Level I: Numbers of nodes and edges. The numbers of nodes and edges for APIs
that represent the test cases.

In columns 4 and 5 of Table 6.5, we list the numbers of nodes and edges, respectively, for

the linked instance for each test case. These numbers are substantially smaller than those

for the intermediate instances. The minimum number of nodes is 177 355 for CppUnit, and

the maximum number of nodes is 254 270 for HippoDraw. The minimum number of edges

is 330 845 for CppUnit, and the maximum number of edges is 1 470 270 for HippoDraw.

The average numbers of nodes and edges are 177 136 and 806 717, with standard deviations

of 70 277 and 409 918, respectively. The substantial reductions indicate a high ratio of

duplication among translation units for all test cases. Recall that duplication is the result

of compiler-specific information, as well as header files, being present in multiple translation

units. Next, we investigate the savings in storage costs introduced by the linking process.

In Table 6.6, we list the sizes on disk, in megabytes, for APIs that represent the test

cases. In column 1, we list the test cases. In columns 2 and 3, we list the total size of the

uncompressed and compressed GXL encoded, intermediate instances of the CppInfo schema,

respectively. In columns 4 and 5, we list the total sizes of the uncompressed and compressed

GXL encoded, linked instances of the CppInfo schema, respectively.

A comparison of columns 2 and 3 of the table to columns 4 and 5 of the table, respectively,

shows the significant savings introduced by the linking process. For all test cases, the

61

Test Case .cpp.tu.ci.gxl[.gz] .cil.gxl[.gz]

AvP 1 586 62 99 5
CppUnit 3 443 103 54 3
Doxygen 2 102 80 126 7
FluxBox 8 609 258 188 10
FOX 7 270 279 149 8
HippoDraw 12 826 389 219 11
Jikes 3 425 111 89 5
Keystone 4 404 132 98 5
Licq 1 380 44 85 5
Pixie 1 212 47 73 4
Scintilla 625 24 71 4
Scribus 7 932 289 231 12

Table 6.6: Level I: Size on disk (MB). The size on disk, in megabytes, for APIs that represent
the test cases.

uncompressed GXL encoding of the linked instance is at least 8.8 times smaller than the

uncompressed GXL encodings of the intermediate instances. For example, the total storage

cost of the linked instance for Jikes is 89 megabytes, but the total storage cost of the

intermediate instances is 3 425 megabytes; the linked instance is 38.5 times smaller than

the intermediate instances. CppUnit shows the biggest difference in storage costs, with

the linked instance 63.8 times smaller than the intermediate instances. Scintilla shows the

smallest difference in storage costs. The savings for the compressed GXL encodings are

similar, although the ratios drop slightly due to the high rate of compression. A large

reduction in size indicates a high level of duplication among translation units (intermediate

instances), likely caused by poor compiler firewalling. Next, we investigate the savings in

run-time costs introduced by the linking process.

In Table 6.7, we list the running times, in seconds, to parse and build in-memory rep-

resentations of APIs that represent the test cases. In column 1, we list the test cases. In

columns 2 and 3, we list the total times for the uncompressed and compressed GXL en-

coded, intermediate instances of the CppInfo schema, respectively. In columns 4 and 5, we

list the total times for the uncompressed and compressed GXL encoded, linked instances of

the CppInfo schema, respectively.

62

Test Case .cpp.tu.ci.gxl[.gz] .cil.gxl[.gz]

AvP 110.81 116.17 8.43 9.47
CppUnit 202.19 217.50 4.70 5.19
Doxygen 143.85 150.62 10.89 11.53
FluxBox 521.57 548.98 16.01 16.52
FOX 516.11 542.16 12.46 13.56
HippoDraw 774.65 815.89 18.23 20.29
Jikes 211.79 223.77 7.68 8.12
Keystone 264.85 270.78 8.84 9.05
Licq 85.50 88.86 7.51 7.75
Pixie 83.88 87.96 6.10 6.52
Scintilla 42.72 44.70 6.08 6.58
Scribus 534.36 445.43 19.46 21.58

Table 6.7: Level I: Time (s). The running time, in seconds, to parse and build in-memory
representations of APIs that represent the test cases.

A comparison of columns 2 and 4 shows a significant savings in run-time costs when

dealing with a linked representation of a program. This result follows directly from the

significant savings in storage costs shown in Tables 6.5 and 6.6. The time to parse a linked

instance is well under 30 seconds for all test cases, whether or not the GXL encoding is

compressed. The time to parse the intermediate instances is under 60 seconds for only one

test case, and over half of the test cases take over three minutes to parse. The maximum

time to parse compressed GXL encodings of intermediate instances is nearly 15 minutes,

for HippoDraw.

6.2.3 Discussion

The results for exchanging low-level graphs show that the storage costs can be prohibitive.

The largest files recorded in this case study, uncompressed GXL encodings of intermediate

instances of the CppInfo schema, total over 53 gigabytes of disc space for the 12 test cases.

However, compressed GXL encodings of linked instances of the CppInfo schema, the smallest

files recorded in this case study, total only 79 megabytes of disc space for the 12 test cases.

The results also show that the run-time costs for low-level graphs can also be prohibitive.

The slowest parsing times in this case study were for compressed GXL encodings of tu files.

63

For the 12 test cases, these files took over 70 minutes to parse. The fastest parsing times

in this case study were for uncompressed GXL encodings of linked instances of the CppInfo

schema. For the 12 test cases, these files took just over 2 minutes to parse.

We presented results that show the importance of a linker for C++ reverse engineering

tools, and presented the first experimental evidence which shows the significant savings that

can be achieved by linking C++ translation units. Unfortunately, the smallest files recorded

in this case study are still too large to be exchanged via email or newsgroups. This is

important, as accessibility of results has been identified as a key hurdle to the adoption of

existing infrastructures [Müller et al. 2000].

6.3 Case Study: Exchanging Middle-Level Graphs

In this section we describe the results of our second case study, in which we examine middle-

level graphs from our infrastructure. In Subsection 6.3.1, we present results for exchanging

GXL encoded instances of schemas at Levels II, III, and IV of our infrastructure. In Sub-

section 6.3.2, we extract results from GXL encoded instances of the Class Diagram, ORD,

and Class Firewall schemas by applying XSLT style sheets. We discuss the results of the

case study in Subsection 6.3.3.

6.3.1 Exchanging Graphs at Levels II, III, and IV

In this subsection we investigate the costs associated with exchanging instances of middle-

level graphs. In particular, we investigate the storage costs of exchanging GXL encoded

instances of the Class Diagram, ORD, and Class Firewall schemas. First, we illustrate GXL

encoded instances of the ORD and Class Firewall schemas. We omit an instance of the Class

Diagram, because it would be nearly identical to the ORD instance. Second, we measure

the space costs incurred by exchanging graphs at Levels II, III, and IV.

In Source Listing 6.5, we list a prototypical GXL encoded instance of the ORD schema.

We list two classes, ::A and ::B. In addition, we list an Inheritance edge, which indicates

64

<?xml ve r s i on=”1 .0 ”?>
<!DOCTYPE gxl SYSTEM ”gxl −1.0 . dtd ”>
<gx l xmlns : x l i nk=”http ://www.w3 . org /1999/ x l i nk ”>

<graph id=”OrdInstance ” edgemode=”d i r e c t ed ”>
<type x l i nk : h r e f=”ORD. gx l#ORD”/>
<node id=”c0 ”>

<type x l i nk : h r e f=”ORD. gx l#Class ”/>
<a t t r name=”name”><s t r i ng > : :A</s t r i ng ></att r>

</node>
<node id=”c1 ”>

<type x l i nk : h r e f=”ORD. gx l#Class ”/>
<a t t r name=”name”><s t r i ng > : :B</s t r i ng ></att r>

</node>
<node id=”e0 ”><type x l i nk : h r e f=”ORD. gx l#Inhe r i t anc e ”/></node>
<edge from=”c0 ” to=”e0 ”><type x l i nk : h r e f=”ORD. gx l#i sDes t ”/></edge>

<edge from=”c1 ” to=”e0 ”><type x l i nk : h r e f=”ORD. gx l#i s S r c ”/></edge>

</graph>

</gxl>

Source Listing 6.5: GXL encoded ORD instance. A GXL encoded instance of the ORD
schema containing two classes, ::A and ::B, and one Inheritance edge. The edge indicates
that B inherits from ::A.

that ::B inherits from ::A. In this case, the Class Diagram instance would be identical, but

for the references to the schema (shown as xlink:href attributes in type tags).

<?xml ve r s i on=”1 .0 ”?>
<!DOCTYPE gxl SYSTEM ”gxl −1.0 . dtd ”>
<gx l xmlns : x l i nk=”http ://www.w3 . org /1999/ x l i nk ”>

<graph id=”C la s sF i r ewa l l I n s t anc e ” edgemode=”d i r e c t ed ”>
<type x l i nk : h r e f=”C la s sF i r ewa l l . gx l#Cla s sF i r ewa l l ”/>
<node id=”c0 ”>

<type x l i nk : h r e f=”C la s sF i r ewa l l . gx l#Class ”/>
<a t t r name=”name”><s t r i ng > : :A</s t r i ng ></att r>

</node>
<node id=”c1 ”>

<type x l i nk : h r e f=”C la s sF i r ewa l l . gx l#Class ”/>
<a t t r name=”name”><s t r i ng > : :B</s t r i ng ></att r>

</node>
<node id=”e0 ”><type x l i nk : h r e f=”C la s sF i r ewa l l . gx l#Edge ”/></node>
<edge from=”c0 ” to=”e0 ”><type x l i nk : h r e f=”C la s sF i r ewa l l . gx l#isCUT”/></edge>

<edge from=”c1 ” to=”e0 ”><type x l i nk : h r e f=”C la s sF i r ewa l l . gx l#i sRe t e s t ed ”/></edge>

</graph>

</gxl>

Source Listing 6.6: GXL encoded Class Firewall instance. A GXL encoded instance of
the Class Firewall schema containing two classes, ::A and ::B, and one edge that indicates
that if ::A has changed and must be tested, then ::B must be retested as well.

In Source Listing 6.6, we list a prototypical GXL encoded instance of the Class Firewall

schema. We again list two classes, ::A and ::B. We also list one Edge edge, which indicates

that if ::A has changed and must be tested, then ::B must be retested as well. This edge

65

Test Case .cd.gxl[.gz] .ord.gxl[.gz] .cfw.gxl[.gz]

AvP 4 207 227 5 845 301 2 735 140
CppUnit 183 10 186 10 76 8
Doxygen 4 530 245 4 309 217 2 038 100
FluxBox 1 297 71 899 49 400 24
FOX 2 922 158 582 28 953 52
HippoDraw 1 706 93 4 016 200 1 065 52
Jikes 1 345 73 4 561 221 1 041 52
Keystone 1 066 58 3 246 156 813 40
Licq 908 49 1 366 68 264 16
Pixie 1 301 71 1 988 101 693 36
Scintilla 399 22 218 12 68 4
Scribus 1 329 72 1 371 69 320 20

Table 6.8: Levels II, III, and IV: Size on disk (kB). The size on disk, in kilobytes, for class
diagrams, ORDs, and class firewalls that represent the test cases.

results from the Inheritance edge in the ORD instance.

In Table 6.8, we list the sizes on disk, in megabytes, for class diagrams, ORDs, and class

firewalls that represent the test cases. In column 1, we list the test cases. In columns 2

and 3, we list the total size of the uncompressed and compressed GXL encoded, instances

of the Class Diagram schema, respectively. In columns 4 and 5, we list the total sizes of the

uncompressed and compressed GXL encoded, instances of the ORD schema, respectively. In

columns 6 and 7, we list the total sizes of the uncompressed and compressed GXL encoded,

instances of the Class Firewall schema, respectively.

In columns 2, 4, and 6, we list the size in kilobytes2 for compressed GXL encoded

instances of the Class Diagram, ORD, and Class Firewall schemas, respectively. The average

number of kilobytes for the compressed GXL encodings of instances of the Class Diagram,

ORD, and Class Firewall schemas, are 95.75, 119.33, and 45.33, with standard deviances of

75.13, 96.76, and 39.61, respectively. Neither the contents, nor the sizes of these instances are

directly comparable. However, the results show that none of the compressed GXL encodings

for the 12 test cases is larger than 301 kilobytes, and that 25 of the 36 compressed files are

no more than 100 kilobytes in size.

2This table uses kilobytes. The similar tables in Section 6.2 use megabytes.

66

6.3.2 Transforming GXL Graphs with XSLT

In this subsection we apply XSLT style sheets to the GXL instances of the middle-level

graphs. In particular, we investigate the run-time costs of the transformations, and present

the results for instances of the Class Diagram, ORD, and Class Firewall schemas. First, we

illustrate a representative XSLT style sheet for summarizing GXL instances, in this case,

instances of the ORD schema. Second, we apply XSLT style sheets to the instances of each

of the three schemas, and summarize the results. We used xsltproc [xsltproc Project 2005]

to apply the style sheets to the GXL graphs.

In Source Listing 6.7, we list an XSLT style sheet for summarizing the information in

a GXL encoded instance of the ORD schema. As we noted in the introduction to this

chapter, writing such a style sheet requires knowledge of only the schema, and not any

particular instance. We list nine variables that contain the sets of instances of classes,

edges, association edges, composition edges, dependency edges, inheritance edges, owned

element edges, and polymorphic edges, respectively. We also list nine statements that print

the sizes of the sets.

In Table 6.9, we present results from applying the XSLT style sheet PrintCdSummary.xslt

to GXL encoded instances of the Class Diagram schema that represent each of the 12 test

cases. In particular, we list the run-time costs of applying the style sheet, and summaries

of the contents. In column 2, we show that xsltproc took less than one second to apply

the style sheet to each of the test cases. In column 3, we list the total number of classes

found in each instance; this class count includes all instances of the CppInfo schema classes

ClassNonTemplate, ClassTemplate, and ClassTemplateInstantiation. In columns 4 through 8,

we list the number of each individual edge type from the schema. Finally, in column 9, we

list the total number of edges for each test case. On average, Class Diagram instances for

our test cases contain hundreds of classes, and thousands of edges. Dependency edges are

most common.

In Table 6.10, we present results from applying the XSLT style sheet PrintOrdSum-

mary.xslt to GXL encoded instances of the ORD schema that represent each of the 12 test

67

<x s l : t rans form ve r s i on=”1 .0 ” xmlns : x s l=”http ://www.w3 . org /1999/XSL/Transform ”
xmlns : x l i nk=”http ://www.w3 . org /1999/ x l i nk ”>

<x s l : output method=”text ” indent=”no ” encoding=”ISO−8859−1”/>
<x s l : s t r i p−space e lements=”∗ ”/>
<x s l : template match=”/ gx l /graph ”>

<x s l : v a r i ab l e name=”nodes ”
s e l e c t=”node [type /@xlink : h r e f =’ORD. gx l#Class ’] ”/>

<x s l : v a r i ab l e name=”edges ”
s e l e c t=”node [type /@xlink : h r e f != ’ORD. gx l#Class ’] ”/>

<x s l : v a r i ab l e name=”a s s o c i a t i o n ”
s e l e c t=”node [type /@xlink : h r e f =’ORD. gx l#Assoc i a t i on ’] ”/>

<x s l : v a r i ab l e name=”compos it ion ”
s e l e c t=”node [type /@xlink : h r e f =’ORD. gx l#Composition ’] ”/>

<x s l : v a r i ab l e name=”dependency ”
s e l e c t=”node [type /@xlink : h r e f =’ORD. gx l#Dependency ’] ”/>

<x s l : v a r i ab l e name=” inh e r i t an c e ”
s e l e c t=”node [type /@xlink : h r e f =’ORD. gx l#Inhe r i t anc e ’] ”/>

<x s l : v a r i ab l e name=”ownedElement ”
s e l e c t=”node [type /@xlink : h r e f =’ORD. gx l#OwnedElement ’] ”/>

<x s l : v a r i ab l e name=”polymorphic ”
s e l e c t=”node [type /@xlink : h r e f =’ORD. gx l#Polymorphic ’] ”/>

<x s l : text>Nodes : </x s l : text>

<x s l : value−o f s e l e c t=”count ($nodes) ”/>
<x s l : text>&nl ;</ x s l : text>

<x s l : text>Edges : </x s l : text>

<x s l : value−o f s e l e c t=”count ($edges) ”/>
<x s l : text>&nl ;</ x s l : text>

<x s l : text>&nl ;</ x s l : text>

<x s l : text>Assoc i a t i on : </x s l : text>

<x s l : value−o f s e l e c t=”count ($ a s s o c i a t i o n) ”/>
<x s l : text>&nl ;</ x s l : text>

<x s l : text>Composition : </x s l : text>

<x s l : value−o f s e l e c t=”count ($compos it ion) ”/>
<x s l : text>&nl ;</ x s l : text>

<x s l : text>Dependency : </x s l : text>

<x s l : value−o f s e l e c t=”count ($dependency) ”/>
<x s l : text>&nl ;</ x s l : text>

<x s l : text>I nhe r i t anc e : </x s l : text>

<x s l : value−o f s e l e c t=”count ($ i nh e r i t an c e) ”/>
<x s l : text>&nl ;</ x s l : text>

<x s l : text>OwnedElement : </x s l : text>

<x s l : value−o f s e l e c t=”count ($ownedElement) ”/>
<x s l : text>&nl ;</ x s l : text>

<x s l : text>Polymorphic : </x s l : text>

<x s l : value−o f s e l e c t=”count ($polymorphic) ”/>
<x s l : text>&nl ;</ x s l : text>

</x s l : template>

</x s l : transform>

Source Listing 6.7: XSLT for summarizing ORD instances. The XSLT style sheet we
used to generate the results listed in Table 6.10. We used similar style sheets to generate
the results listed in Tables 6.9 and 6.11.

68

Test Case Time (s) Classes A
ss

o
ci

at
io

n

C
om

p
os

it
io

n

D
ep

en
d
en

cy

In
h
er

it
an

ce

O
w

n
ed

E
le

m
en

t

Total Edges

AvP 0.66 2 099 1 353 388 6 128 371 523 8 763
CppUnit 0.02 59 27 3 349 28 6 413
Doxygen 0.57 752 406 577 6 372 492 33 7 880
FluxBox 0.15 318 163 349 1 603 233 43 2 391
FOX 0.53 500 387 352 6 311 224 203 7 477
HippoDraw 0.24 272 379 27 3 289 195 1 3 891
Jikes 0.38 433 749 150 4 645 180 55 5 779
Keystone 0.15 163 173 22 2 120 111 4 2 430
Licq 0.09 224 32 17 1 249 161 1 1 460
Pixie 0.19 309 405 30 2 296 146 50 2 927
Scintilla 0.04 89 52 79 2 198 14 1 2 813
Scribus 0.17 243 1 154 33 1 568 17 25 2 797

Table 6.9: Class Diagram sizes for the test suite. The number of classes and edges, by
type, in the 12 instances of the Class Diagram schema constructed for the applications and
libraries in our test suite.

Test Case Time (s) Classes A
ss

o
ci

at
io

n

C
om

p
os

it
io

n

D
ep

en
d
en

cy

In
h
er

it
an

ce

O
w

n
ed

E
le

m
en

t

P
ol

y
m

or
p
h
ic

Total Edges

AvP 3.33 2 082 1 346 381 6 075 367 381 15 872 24 422
CppUnit 0.06 56 27 3 349 26 6 409 820
Doxygen 2.36 724 390 575 6 267 475 31 11 144 18 882
FluxBox 0.37 307 161 346 1 600 226 40 1 470 3 843
FOX 9.76 499 387 352 6 311 223 203 27 716 35 192
HippoDraw 2.10 271 379 27 3 289 195 1 14 043 17 934
Jikes 2.50 427 748 147 4 640 179 53 14 533 20 300
Keystone 1.78 162 173 22 2120 111 4 12 185 14 615
Licq 0.60 224 32 17 1 249 161 1 4 613 6 073
Pixie 0.91 299 398 30 2 271 142 45 5 938 8 824
Scintilla 0.24 89 52 79 2 198 14 1 469 2 813
Scribus 0.57 243 1 154 33 1 568 17 25 3 293 6 090

Table 6.10: ORD sizes for the test suite. The number of classes and edges, by type, in the
12 instances of the ORD schema constructed for the applications and libraries in our test
suite.

69

Test Case Time (s) Classes Edges Min Max Avg

AvP 2.25 2 082 9 695 1 724 182.67
CppUnit 0.25 56 275 1 40 21.66
Doxygen 3.12 724 7 888 1 623 369.34
FluxBox 0.66 307 1 436 1 216 154.76
FOX 6.00 499 3 636 1 231 41.79
HippoDraw 0.83 271 4 200 1 210 116.07
Jikes 1.52 427 3 994 1 330 297.95
Keystone 3.33 162 3 242 1 140 87.89
Licq 0.50 224 959 1 172 26.90
Pixie 0.76 299 2 665 1 162 83.43
Scintilla 0.50 89 219 1 38 21.53
Scribus 0.62 243 1 175 1 107 64.40

Table 6.11: Class Firewall sizes for the test suite. The numbers of classes and edges in
the 12 instances of the Class Firewall schema. In addition, the minimum, maximum, and
average class firewall sizes for each of the instances. Class firewall sizes are expressed as
number of classes.

cases. In particular, we list the run-time costs of applying the style sheet, and summaries

of the contents. In column 2, we show that, for half of the test cases, xsltproc took less than

one second to apply the style sheet; the maximum running time was 9.76 seconds for FOX.

In column 3, we list the total number of classes found in each instance. This class count

includes all instances of the CppInfo schema classes ClassNonTemplate and ClassTemplateIn-

stantiation. In columns 4 through 9, we list the number of each individual edge type from

the schema. Finally, in column 10, we list the total number of edges for each instance. On

average, ORD instances for our test cases contain hundreds of classes, and tens of thousands

of edges. Polymorphic edges are, by far, the most common.

In Table 6.11, we present results from applying the XSLT style sheet PrintCfwSum-

mary.xslt to GXL encoded instances of the Class Firewall schema that represent each of the

12 test cases. In particular, we list the run-time costs of applying the style sheet, and sum-

maries of the contents. In column 2, we show that, for half of the test cases, xsltproc took

less than one second to apply the style sheet; the maximum running time was 6.00 seconds

for FOX. In column 3, we list the total number of classes found in each instance. These

classes are the same set of classes found in the corresponding ORD instance. In column 4,

70

we list the total number of edges for each instance. On average, Class Firewall instances

for our test cases contain hundreds of classes, and thousands of edges.

In columns 5 and 6, we list the minimum and maximum number of classes, respectively,

found in the class firewall for any class from the particular test case. For each of the 12 test

cases the minimum class firewall size is one (1). The maximum class firewall size is as small

as 38 classes in Scintilla, and as large as 724 classes in AvP. The average class firewall size

for all 12 test cases is 122 classes, with a standard deviation of 112.

6.3.3 Discussion

The results for exchanging middle-level graphs show, for both storage and run-time costs,

savings of at least one order of magnitude when compared to the results for exchanging

low-level graphs. Thus, the results indicate significant savings in the costs of exchange for

applications that do not require full low-level information about a program. For example,

no compressed GXL encoding of a middle-level graph is greater than 301 kilobytes for any

of the 12 test cases. In addition, it took no more than 9.76 seconds to apply, using xsltproc,

a style sheet that summarizes the contents of the given graph.

An application that builds a class firewall can take advantage of the savings that we

highlight in this case study by taking ORD instances, rather than ASG or API instances,

as input. This is the technique that we used to create GXL encoded instances of the Class

Firewall schema for this case study. Other applications of these savings are described in

Chapter 4.

We demonstrate the use of XSLT to extract information from GXL encoded instances

of three different schemas. We show that this process is efficient, and present experimental

results for the 12 test cases in our test suite. All GXL files that we created for this case study

are available in our SourceForge.net repository, and are available for use by practictioners

and other researchers.

